반응형 GRU1 [NLP] GRU (Gated Recurrent Unit) 본 글은 카이스트 최윤재 교수님의 Programming for AI (AI504, Fall 2020), Class 9: Recurrent Neural Networks와 WikiDocs의 딥 러닝을 이용한 자연어 처리 입문을 바탕으로 정리한 글입니다. GRU (Gated Recurrent Unit) 게이트 메커니즘이 적용된 RNN 프레임워크의 일종 기존 LSTM의 구조를 조금 더 간단하게 개선한 모델 LSTM의 장기 의존성 문제에 대한 해결책을 유지하면서, 은닉 상태를 업데이트하는 계산을 줄임 LSTM와 달리 출력 게이트가 없는 간단한 구조 마지막 출력값에 활성화 함수를 적용하지 않습니다. 성능 면에서는 LSTM과 비교해서 우월하다고 할 수 없지만 학습할 파라미터(가중치)가 더 적은 것이 장점 분설 결과가.. 2022. 3. 28. 이전 1 다음 반응형